Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel
نویسندگان
چکیده
OBJECTIVE To investigate the influence of a three-dimensional cell culture model on the expression of osteoblastic phenotype in human periodontal ligament fibroblast (hPDLF) cultures. MATERIAL AND METHODS hPDLF were seeded on bi-dimensional (2D) and three-dimensional (3D) collagen type I (experimental groups) and and on a plastic coverslip (control) for up to 14 days. Cell viability and alkaline phosphatase (ALP) activity were performed. Also, cell morphology and immunolabeling for alkaline phosphatase (ALP) and osteopontin (OPN) were assessed by epifluorescence and confocal microscopy. The expression of osteogenic markers, including alkaline phosphatase, osteopontin, osteocalcin (OC), collagen I (COL I) and runt-related transcription factor 2 (RUNX2), were analyzed using real-time polymerase chain reaction (RT-PCR). Mineralized bone-like nodule formation was visualized by microscopy and calcium content was assessed quantitatively by alizarin red assay. RESULTS Experimental cultures produced an increase in cell proliferation. Immunolabeling for OPN and ALP in hPDLF were increased and ALP activity was inhibited by three-dimensional conditions. OPN and RUNX2 gene expression was significantly higher on 3D culture when compared with control surface. Moreover, ALP and COL I gene expression were significantly higher in three-dimensional collagen than in 2D cultures at 7 days. However, at 14 days, 3D cultures exhibited ALP and COL I gene expression significantly lower than the control, and the COL I gene expression was also significantly lower in 3D than in 2D cultures. Significant calcium mineralization was detected and quantified by alizarin red assay, and calcified nodule formation was not affected by tridimensionality. CONCLUSION This study suggests that the 3D cultures are able to support hPDLF proliferation and favor the differentiation and mineralized matrix formation, which may be a potential periodontal regenerative therapy.
منابع مشابه
بررسی میزان بیان (expression فیبرونکتین، کلاژن نوع I و TGF-ß)وسط سلولهای فیبروبلاست لیگامان پریودونتال انسانی در مجاورت مواد پر کننده انتهای ریشه
Background and Aim: Several materials have been introduced for retrograde fillings, pulp capping and sealing root perforations, but their biological effect on vital tissues and cells is not clear. The purpose of this study was to evaluate the reaction of human periodontal ligament fibroblasts to four root canal filling materials: Pro Root MTA, Root MTA, Portland cement and amalgam. Materials a...
متن کاملThree-dimensional loading model for periodontal ligament regeneration in vitro.
In this study we present a new three-dimensional (3D) model to study effects of mechanical loading on tendon/ligament formation in vitro. The model mimics a functional periodontal ligament (PDL), which anchors dental roots to the jaw bone and transfers the axial load of mastication to the jaw bone. A collagen gel containing human PDL fibroblasts was seeded in a PDL space between an artificial r...
متن کاملMatrix metalloproteinase inhibitors reduce collagen gel contraction and alpha-smooth muscle actin expression by periodontal ligament cells.
BACKGROUND AND OBJECTIVE Orthodontic tooth movement requires remodeling of the periodontal tissues. The matrix metalloproteinases (MMPs) degrade the extracellular matrix components of the periodontal ligament, while the tissue inhibitors of metalloproteinases (TIMPs) control their activity. Synthetic MMP inhibitors have been developed to inhibit MMP activity. In this study, periodontal ligament...
متن کاملContraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types.
Monkey periodontal ligament fibroblasts (MPLF cells), human gingival fibroblasts (HGF cells), rat embryonic calvaria cells (REC cells), porcine periodontal ligament epithelial cells (PPLE cells) and rat osteosarcoma 17/2 cells (ROS cells) were incorporated into 3-dimensional collagen gels plated in 60 mm Petri dishes in order: first, to measure the capacity of these cell types to contract; seco...
متن کامل[Characterization of rat periodontal ligament cells in culture].
It has been reported that periodontal ligament cells (PDLC) show osteoblastic phenotypes in culture. In most previous studies, PDLC have been obtained from the tooth root surface, however, a new method in which PDLC are obtained from the coagulum after tooth extraction has been proposed recently. To compare PDLC from tooth surface with these from coagulum, PDLC from both sources were cultured a...
متن کامل